- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Beamer, Jordan (2)
-
Arendt, Anthony (1)
-
Curchitser, Enrique (1)
-
Danielson, Seth L. (1)
-
Hedstrom, Katherine S. (1)
-
Hill, David F. (1)
-
Hood, Eran (1)
-
Liston, Glen E. (1)
-
Pettit, Erin (1)
-
Young, Joanna C. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We demonstrate a linking of moderately high resolution (1 km) terrestrial hydrological models to a 3‐D ocean circulation model having similar resolution in the northern Gulf of Alaska, where a distributed line source of freshwater runoff exerts strong influence over the shelf's hydrographic structure and flow dynamics. The model interfacing is accomplished via mass flux boundary conditions through the ocean model coastal wall at all land‐ocean adjoining grid cells. Despite the high runoff volume and lack of a coastal mixing estuary, the implementation maintains numerical stability by prescribing depth invariant and surface‐intensified inflows at fast and slow discharge grid cells, respectively. Based on comparisons against in situ hydrographic data, the coastal sidewall mass flux boundary condition results in more realistic hindcast surface salinity and salinity gradient fields than models that distribute coastal runoff in the form of spatially distributed precipitation. Correlations with observed thermal and haline monthly anomalies reveal statistically significant hindcast temporal variability during the freshet season when the signal‐to‐noise ratio is large. Comparisons of ocean models forced by high‐ and low‐resolution hydrological models reveal differences in salinity, surface elevation, and velocity fields, highlighting the value and importance of accurate coastal runoff fields. The model results improve our understanding of the regional influence of runoff on sea level elevations and the distribution and fate of fresh water. Our approach has potential applications to biogeochemical modeling in regions where distributed line source freshwater coastal discharges deliver heat, momentum, and chemical constituents that may influence the marine carbon pump.more » « less
-
Young, Joanna C.; Pettit, Erin; Arendt, Anthony; Hood, Eran; Liston, Glen E.; Beamer, Jordan (, Water Resources Research)Abstract With a unique biogeophysical signature relative to other freshwater sources, meltwater from glaciers plays a crucial role in the hydrological and ecological regime of high latitude coastal areas. Today, as glaciers worldwide exhibit persistent negative mass balance, glacier runoff is changing in both magnitude and timing, with potential downstream impacts on infrastructure, ecosystems, and ecosystem resources. However, runoff trends may be difficult to detect in coastal systems with large precipitation variability. Here, we use the coupled energy balance and water routing model SnowModel‐HydroFlow to examine changes in timing and magnitude of runoff from the western Juneau Icefield in Southeast Alaska between 1980 and 2016. We find that under sustained glacier mass loss (−0.57 ± 0.12 m w. e. a−1), several hydrological variables related to runoff show increasing trends. This includes annual and spring glacier ice melt volumes (+10% and +16% decade−1) which, because of higher proportions of precipitation, translate to smaller increases in glacier runoff (+3% and +7% decade−1) and total watershed runoff (+1.4% and +3% decade−1). These results suggest that the western Juneau Icefield watersheds are still in an increasing glacier runoff period prior to reaching “peak water.” In terms of timing, we find that maximum glacier ice melt is occurring earlier (2.5 days decade−1), indicating a change in the source and quality of freshwater being delivered downstream in the early summer. Our findings highlight that even in maritime climates with large precipitation variability, high latitude coastal watersheds are experiencing hydrological regime change driven by ongoing glacier mass loss.more » « less
An official website of the United States government
